
Sci.Int.(Lahore),29(6),1297-1308,2017 ISSN 1013-5316;CODEN: SINTE 8 1297

November-December

USING CRYPTOANALYSIS POLICIES AND TECHNIQUES TO CREATE
STRONG PASSWORD

Abdulrahman H. Majeed* and Sajaa G. Mohammed
Department of Mathematics, College of Science, University of Baghdad , Baghdad Iraq .

*Email: ahmajeed6@yahoo.com

ABSTRACT : Password is still the widespread way used for securing the computer systems. In fact, a great number of

organizations and institutions trust in the use of passwords, and for that reason, they strictly enforce their users to have

secure passwords. These organizations typically attempt to carry out security by commanding users to come after

password creation policies. However, password creation policies make an effort to assist computers’ users to make secure

passwords, they are in general not very efficient and have a tendency to disappoint users. Rule based, for instance, are the

most common policies. They have been made known for their perfect limitations. Although, these policies impose their

users on following certain rules such as a least possible length, symbols or numbers, they are not compliable with each

other. In the current paper, the researchers refer to unlike password creation policies as well as password checkers by

using Crypto Analysis policies and methods to find well-protected password that seek to assist users to make secure

passwords in order to address their issues. As a matter of fact, the work involves some coding modules; the first indicates

to implement recursive byte array transformation (i.e., create the total probable keys), the appropriateness of this modules

was examined experimentally. The second cryptanalysis technique step is the use of the password strength tester (checker),

the performance of this system has also been experienced. Furthermore, the message digest hashing function MD5

algorithm is made full use to reform password and produce further security on password OS file system. The reformed

passwords have been examined by using old-dated traditional MD5. It used with password brute-force attacking.

Moreover, an instrument named EP has been advanced; it is to be discussed in details in the present paper to show the

way of use the secure passwords through applying such metrics. Indeed, the done crypt analysis system has been designed

and applied, as well as results were examined. Standard cracked password data sets were used as test materials to

examine the performance of the recommended cryptanalysis pattern; the results show that the competence of offered

pattern gives one support in comparison with the other cryptanalysis pattern.

Keywords: Cryptanalysis, Ciphering, Password, Cracking, Cryptology, Cryptography, Enhanced Passwords, Analyzing And

Enhancing Password,

1. INTRODUCTION

Multiple accounts, and not to write their passwords down.

Yet users have many passwords and are expected to create

a password for every new service. Often, users are required

to change their passwords at regular intervals. Taken as a

whole, these requirements are difficult, if not impossible,

for users to meet. So they needed always generate secure

password [1]. Secure password generation is complicated

by the tradeoff between developing passwords which are

both challenging to crack and usable. Truly random

passwords are difficult for users to memorize, and user-

chosen passwords may be highly predictable. This

limitation has led to the use and advocacy of password

creation policies that purport to help the user in ensuring

that the user chosen password is not easily breakable

Password policies attempt to mediate between two goals

which are challenging to crack and usable these two goals

accomplish by forcing users to incorporate additional

complexity into a password, such as by mandating the user

include an odd character or use passwords of some minimal

length. However, these policy mechanisms are hampered

by an ill-defined understanding of their actual effectiveness

against real attack techniques, and by circumvention

strategies employed by the users [2]. The most prevalent

password creation policy is the rule-based approach

wherein users are given rules such as minimum length of

eight characters and must contain an upper case letter and a

special symbol. It has been shown by several authors that

this approach by itself is not very effective [2, 3]. A second

type of password creation policy can be termed the random

approach where an effectively random string is given by a

system to the user. Clearly the random approach has the

problem that the given string is in general non memorable

so the purpose of having a password that can easily be

remembered is defeated. This paper presents a third

approach which is to have a system that analyzes and

checker a user proposed password Using Cryptoanalysis

Policies and Techniques in order to detect wither the

password is a strong and good for using or not . We show

that empirical analysis based on trying to crack passwords

using probabilistic techniques [4] can be adapted to

analyzing the strength of passwords. We show how the

associated probabilistic context-free grammar can be used

to build a realistic reject function that can distinguish

between strong and weak passwords based on a threshold

probability. An obvious component of an empirical analysis

might be to have a dictionary of popular passwords and

ensure that the modified password is not one of these. But a

more important consideration is to show that the modified

password is not likely to be cracked using any technique as

we are able to do. The black-listing approach is

automatically subsumed by our approach simply by the

choice of dictionaries. Note that we are interested in

protecting against offline attacks where an attacker has

obtained a set of hashes (and likely user names) and desires

to break as many passwords as possible in a reasonable

amount of time .We illustrate the effectiveness of our

prototype system, called enhanced Passwords (EP), through

a series of experiments on three lists of disclosed

passwords. EP was able to modify weak passwords and

strengthen them with strong passwords that were within an

edit distance of one from the user passwords.

2. BACKGROUND & PREVIOUS WORK

In fact, several studies exerted efforts to outline various

aspects on how users select passwords. Riley [5] conducted

a study on 315 participants. He found that about 75% of

them said that they have a set of fixed passwords use

repeatedly. While almost 60% said that they used to use

complicated passwords depending on the nature of the

website they use. Stone-Gross et al. [6] conducted another

1298 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),29(6),1297-1308,2017

November-December

study by collecting around 298 thousand passwords from

the Torpig botnet. The researchers found that almost 28%

of users reused their passwords and succeeded to crack

over 40% of the passwords in less than 75 minutes. This

study shows that abstaining strong passwords for

unessential websites, including social networking websites

is probably being necessary for websites, such as online

banking. On the other hand, most organizations and

websites apply a rule-based method in commending or

implementing password policies. In another study, Shay et

al. [7] indicated that users were unhappy about varying the

previous password creation procedure to a stricter one. This

process took an average of 1.77 tries to select a new

password recognized by the system based on a new

password creation policy that recently founded. In addition

study conducted by [8], it is shown that varying and

inconsistent recommendations make unreliable advice for

users. The U.S. NIST guideline [9], the basis for all rule-

based strategies, offered a rule-based method that practices

the notion of Shannon entropy for guessing password

strength based on recommended values of the components

of the passwords. On the other hand, Zhang et al. [10]

showed that attackers can effortlessly get access to

accounts by catching the account’s’ previous passwords.

The researchers in their study recommend that at least 41%

of passwords can be broken offline from previous

passwords in seconds and merely five online passwords

meet the requirements to break 17% of accounts. In a

recent study made by [11], though at the present time users

realize the significance of secure behavior, they still think

that it is difficult to deal with password creation policies,

and they hardly ever alter their passwords due to the

frustration of forming a new password along with their

struggle in remembering it. In their study, Charoen et al.

[12] and Adams and Sasse [13] state that users are not even

agree about the need of abstaining well-protected password.

The reason behind choosing insecure passwords is because

they are not familiar with the way of creating secure ones.

Studies [14] show that even limiting password creation

policies do not have an influence on the use of significant

information in passwords. They do not reduce reuse of

these passwords. The use of the previous passwords can

subject users with different types of attacks such as

phishing, key-logging and targeted attacks [15].

Furthermore, Shay et al. [16] in the different study show

that the more limited and complicated policy, the less user-

friendly is. Some others [17, 18] have explored the use of

the random password generation method. The main

problem in these studies focuses on the usability of the

password for the user since such password has normally no

context for the user and hardly to remember. Moreover,

Forget et al. [19] studied the memorability of passwords by

randomly inserting or exchanging the permanent number of

characters in a selected password. Their study displayed

that users who confirmed their changed passwords once

could recall it effortlessly (passwords without change).

However, they did not change a methodology for analyzing

the strength of these passwords. Producing secure

passwords is a tradeoff between generating passwords that

are hard to crack and use. Although, some studies on

creating suitable passwords [15, 18] attempt to provide an

understanding on how several policy factors create

passwords easier, memorable, and functional, none of them

have been applied. However, the work of Verheul [18] is

considered a perfect example on trying to understand the

relationship between countless entropy measures to build

secured passwords. Verheul showed the way to build

sensible short secure passwords based on calculating the

Shannon entropy with the norms of the min entropy and

estimating entropy. Nonetheless, there was no attempt in

the current paper to study the usability or memorability of

the passwords or how to change user proposed password.

The analyze-modify method also has certain related history.

The analysis is typically a simple way to define whether a

password is weak as checking against a dictionary or not.

Note that, in reality, this is not certainly considered

satisfied condition for a password to be strong. Current

proactive password checkers commonly keep an eye on a

black-listing approach. For example, see Yan [20] and

Spafford [21]. However, simple black-listing approaches in

general include some problems in any sophisticated

dictionary based attack. Perhaps, there are relevant studies

related to the approach applies in the current paper as he

study conducted by Schechter et al. [22] that include the

popularity of passwords. Schechter et al. [22] propose to

build an oracle for current passwords that are obtainable to

the Internet-scale authentication systems. They suggested

that the popular passwords are rejected and the main thrust

of their work is to devise a way to competently store

countless numbers of popular passwords that would be

prohibited. In their study, a question is posed on how to use

the oracle without enlightening the actual password to

attackers while asking online. The researchers of the

present paper show their technique that gets around this

problem. More recently, [23] search measuring the strength

of passwords by using a Markov approach. Our approach

show first how generate password then the second step is

how cracking system can in fact be used for analyzing

passwords. Once such an analysis is done. We next review

some classical mathematical notions that have been

proposed to measure strengths of passwords. After this, we

review the probabilistic password cracking approach that

we use for doing enhanced password (EP).

1. Different Policies and Advice on Password

Creation

A secure password should include punctuation marks

and/or numbers. You should mix capital and lowercase

letters. Include substitutes such as ―$‖ for ―S‖ and ―0‖ for

―O‖. You should not use personal information like names

and birth dates. Do not use dictionary words, keyword

patterns and sequential numbers. Do not use repeating

characters (aa11) [24].

Use at least 7 characters. The more characters your

password contains, the harder it is for someone to guess it.

A long but simple password can be safer than a short,

complex one — and often easier to remember [25].

Strong passwords are important protections to help you

have safer online transactions. The main keys to password

strength are length and complexity the ideal password is

long and has letters, punctuation, symbols, and numbers.

The difficulty, of course, is remembering them especially

when you need a password for every utility bill, bank

account [26].

Table 1 illustrates a small sample of current password

policies. As you can see there is no uniformity in these

policies and the reason may be that there is no proof of

effectiveness of any of these approaches for password

security [27].

Sci.Int.(Lahore),29(6),1297-1308,2017 ISSN 1013-5316;CODEN: SINTE 8 1299

November-December

Table 1: Different password policies [27]

As indicated there are many different types of advice for

creating a secure password. In fact, some of the

recommendations, even contradict each other, which make

them unreliable for users. One example of clearly

contradictory advice is not including the website name

(many sites suggest this) in the password vs. including it

(as suggested by WikiHow). In the next section we discuss

some existing password checking systems designed to help

users develop better passwords.

With respect to password security, it is not only essential to

have a secure system to store user’s passwords, but it is

also important how users create and use their passwords.

The number of accounts for a single user is growing. The

result of a survey of 2000 users has shown that a typical

user has about 25 online accounts and one in four users

uses a single password for most of their accounts [28].

Florencio et al. [29] showed that on average a user has 6.5

passwords and each password is typically being reused

across 3.9 different websites. Enforcing complex password

policies makes it harder for users to create memorable

passwords. Because of this, many users reuse the same

password for multiple accounts against experts’ advice.

This reduces the security tremendously since when an

attacker obtains a password; it is often tried on many

different websites. Thus, no matter how secure a service is;

the security of it can be reduced because of its users’

actions. As more and more websites replace usernames

with email addresses, it becomes much easier for attackers

to attack and access our accounts. Users are often forced to

change their password on a given account because of a

threat or simply due to expiration policies. In these

situations users are more likely to apply only slight changes

to their previous password instead of creating a new one.

Furthermore, users also tend to use a password with slight

modification across different websites. Having different

password creation policies for different websites might

prevent users from some reuse of the same password (an

unintended consequence), but it does not prevent users

from using passwords that are very similar. A study by

Shay et al conducted on 470 University students, staff and

faculty has shown that 60% used one password with slight

changes for different accounts [30].

In [31] the authors examined leaked password sets and

found that users often do simple tricks to slightly change

their passwords and to work around different password

policies.

2. Password Strength / Weakness
 Passwords are a notoriously weak authentication

mechanism. Users frequently choose poor passwords. An

adversary who has stolen a file of hashed passwords can

often use brute force search to find a password p whose

hash value H (p) equals the hash value stored for a given

user’s password, thus allowing the adversary to

impersonate the user [32]. There have been several

attempts for measuring password security and developing

techniques (such as hardening) for passwords to be both

strong and usable for the user [33]. Yuan et al conducted an

experiment involving 400 first-year students at Cambridge

University. They found that users have difficulty

memorizing random passwords and that mnemonic

passwords could provide both good memorability and

security [34]. Nowadays, many systems encourage users to

create a mnemonic phrase-based passwords. For creating a

mnemonic password, the user chooses a memorable phrase

and uses a character (usually the first letter) to represent

each word in the phrase. Organizations usually suggest

mnemonic password as a stronger password because first,

you cannot find the mnemonic password in dictionaries

used for password cracking, and second, a user can

incorporate different types of characters such as numbers

and punctuations easily in their chosen password [33].

3. Cryptanalysis
Cryptanalysis is a study of how to compromise (defeat)

cryptographic mechanism. There are two classes of key-

based encryption algorithms: symmetric (or secret-key) and

asymmetric (or public-key) algorithms. Symmetric

algorithms use the same key for encryption and decryption,

whereas asymmetric algorithms use different keys for

encryption and decryption. Ideally, it is infeasible to

compute the decryption key from the encryption key [35].

Cryptanalysis is the methods to attack cryptographic

protection. There are several ways to achieve this goal. A

cipher is breakable if it is possible to determine the

plaintext or key from the ciphertext, or to determine the key

from the plaintext-ciphertext pair [36].

Computationally secure is established with the two criteria

meet at the same time first one is the cost of breaking the

cipher exceeds the value of the encrypted information. And

the second one is the time required to break the cipher

exceeds the useful lifetime of the information [37]. In this

paper, we use Cryptanalysis Policies and Techniques in

order to create strong password.

4. Proposed Work (Cryptanalysis Schemas

System)

The suggested schemes consist of some coding modules.

The first coding modules are indicated to perform recursive

byte array permutation (i.e., generate all possible keys),

their suitability was investigated experimentally. The

second cryptanalysis method step is the application of the

password strength tester (checker), this system performance

has been tested. The message digest hashing function MD5

algorithm is exploited to regenerate password, and used to

give more security on password OS file system. The

regenerated passwords have been created using traditional

MD5. The third cryptanalysis method is password brute-

force attacking.

The full cryptanalysis system has been designed and

implemented and their results were analysed. Standard

1300 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),29(6),1297-1308,2017

November-December

cracked password data sets were used as test materials to

investigate the performance of the suggested cryptanalysis

scheme; the results indicate that the efficiency of the

proposed scheme is encouraging when it is compared with

state of the art other cryptanalysis scheme.

In the current research work several programming systems

(6 programms) have been implemented and tested. These

systems will demonstrate in details in the next sections.

4.1 Generate passwords

I. Generate password using Simple Recursive

Permutation

This section is related to the password Generator

Possibilities method. Takes in a string and splits out all

possible permutations of the inputted characters using a

simple recursive routine.
.

Table (2): A simple routine to generate all possible combinations of a given list of numbers

Algorithm (1):Generate All Possible Combinations of a Given List of Numbers

Goal: Takes in a string and spits out all possible permutations of the inputted characters using a simple recursive routine.

Input: Letters[] // String of characters

Output: Permut // List of all Possible Permutations of Letters characters

Algorithm Steps:

Step 1: If (Length (Letters) =1) Then

 Print Built & Letters

 Go to Step 3

Step 2: For all i Do {where 0 < i > Length (Letters) }

 st ← Letters[i]

 stmo ← Letters[i – 1]

 stpo ← Letters[i + 1]

 Letters ← stmo & stpo

 Built ← Built & st

 Go to Step 1

Step 3: Go to Step 2

II. Message Digest Algorithm

The MD5 algorithm is a widely used hash function,

producing a 128-bit hash value. Although MD5 was

initially designed to be used as a cryptographic hash

function, it has been found to suffer from extensive

vulnerabilities. It can still be used as a checksum to verify

data integrity, but only against unintentional corruption.

Like most hash functions, MD5 is neither encryption nor

encoding. It can be cracked by brute force attack and

suffers from extensive vulnerabilities as detailed in the

security section below.

III. Length / Entropy

Effective evaluation of password strength requires a proper

metric. One possible metric is information entropy, has

been stated in a paper presented to the 2012 IEEE

Symposium on Security and Privacy [38].

Eight characters is the minimum length for a password to

be secure if it takes advantage of all the potential character

types. With 26 possibilities from lower case, 26 from

uppercase, 10 from numbers and 12 from the full set of

symbols this means every keyspace has 95 possible entries.

Note: ―`~!@#$%^&*()-_=+[{]};:',<.>/?\|‖ A number of

these cannot be used with password systems. A total of 32

symbols are present.

The total number of possibilities (TNP) could be calculated

using the following equation:

)1.3(..........,.........DMLSTNP

Where LS denoted to Length of string List and DM

denoted to number of digit manipulation. The probability

could be found using the following equation:

)2.3(..........,.........
1

TNP
P

From this, it could determine that the possible

combinations for a 8-letter password are 63
8
. This means

there are just less than 2.4×10
14

 combinations of passwords

and probability is 4×10
-15

. Therefore the required time to

crack if a computer could test 100 million (possibilities /

second) is about 297 day (see figure (3).

4.2 Password Strength Checker Method

 Now with common list of passwords database and

customized analysis. With the fast growing of the Internet,

the use of passwords has become very important for all of

us. But not a lot of people uses strong password (which

mean it cannot be easily cracked).

So, this method was programmed work has been made this

utility to test user passwords to see if they are strong. If the

user just has to enter a password and the program will tell

you how is it strong and it will also tell how much time it

would take to crack this password. Table (3) shows in

details the password Strength Checker sub procedure.

Application of the
Password

Generate of the
Password

Cryptanalysis of the
Password cryptanalysis

Sci.Int.(Lahore),29(6),1297-1308,2017 ISSN 1013-5316;CODEN: SINTE 8 1301

November-December

Table (3): Password Strength Tester script written in Visual Basic 0.6

Start Sub

Dim sAnalysis As String 'The variable to store the customized analysis

lLenPass = Len(tPass.Text) Getting the length of the password

sPass = tPass.Text Getting the password

Checking if the password is in the common list of passwords

If InStr(1, PasswordList, ";" & sPass & ";") <> 0 Then

 commonFlag = True 'Setting the commonpass flag to true so the program will consider it

End If

Seeking for uppercase letters

For i = 1 To lLenPass

 If UCase(Mid(sPass, i, 1)) = Mid(sPass, i, 1) And IsAlpha(Mid(sPass, i, 1)) = True Then upperFlag = True: Exit For

Next i

Seeking for lowercase letters

For i = 1 To lLenPass

 If LCase(Mid(sPass, i, 1)) = Mid(sPass, i, 1) And IsAlpha(Mid(sPass, i, 1)) = True Then lowerFlag = True: Exit For

Next i

'Seeking for numbers Chr 048-057

For i = 1 To lLenPass

 If Asc(Mid(sPass, i, 1)) <= 57 And Asc(Mid(sPass, i, 1)) >= 48 Then numberFlag = True: Exit For

Next i

Seeking for char other than those ranges 065-090 097-122 048-057

For i = 1 To lLenPass

 tmpchar = Asc(Mid(sPass, i, 1))

 If tmpchar < 65 Or tmpchar > 90 Then

 If tmpchar < 97 Or tmpchar > 122 Then

 If tmpchar < 48 Or tmpchar > 57 Then

 specialFlag = True

 Exit For

 End If

 End If

 End If

Next i

Now calculating an index considering all the Flags values

Calculating possibilities

If upperFlag = True Then

 range = range + 26: flagtot = flagtot + 1

Else

 sAnalysis = sAnalysis & "Weakness: There's no uppercase letters in your password" & vbCrLf

End If

If lowerFlag = True Then

 range = range + 26: flagtot = flagtot + 1

Else

 sAnalysis = sAnalysis & "Weakness: There's no lowercase letters in your password." & vbCrLf

End If

If numberFlag = True Then

 range = range + 10: flagtot = flagtot + 1

1302 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),29(6),1297-1308,2017

November-December

Else

 sAnalysis = sAnalysis & "Weakness: There's no numbers in your password." & vbCrLf

End If

If specialFlag = True Then

 This is an arbitrary value for number of special printable characters

 range = range + 30: flagtot = flagtot + 1

Else

 sAnalysis = sAnalysis & "Weakness: There's no special chars in your password." & vbCrLf

End If

If lLenPass < 8 Then

 sAnalysis = sAnalysis & "Weakness: Your password length is under 8."

End If

If commonFlag = True Then

 Number of possibilities is the number of passwords in the common list

 dPossib = PasswordNum

 sAnalysis = "MAJOR WEAKNESS: Your password is detected as one of the common passwords used by users. If a hacker wants to

crack your password, he will first try this list." & vbCrLf & sAnalysis

Else

 dPossib = range ^ lLenPass

End If

Calculating the time it will take

dTime = (((dPossib / (NUMBERPERSECOND)) / (365 * 24)) / 3600) / 2 'The /2 is because it takes approximatly the half of the test to

find the pass

Setting the Progress Bar: Note that you can customize the const for how much years to crack you consider to be weak, ok, strong

If dTime >= CVRYSTRONG Then

 Progress.Value = 100

ElseIf dTime >= CSTRONG Then

 Progress.Value = 75

ElseIf dTime >= COK Then

 Progress.Value = 47

ElseIf dTime >= CWEAK Then

 Progress.Value = 23

ElseIf dTime <= CVRYWEAK Then

 Progress.Value = 1

End If

Formatting the time it will take

lMes.Caption = "years."

If dTime < 1 Then

 dTime = dTime * 365

 lMes.Caption = "days."

 If dTime < 1 Then

 dTime = dTime * 24

 lMes.Caption = "hours."

 If dTime < 1 Then

 dTime = dTime * 60

 lMes.Caption = "minutes."

 If dTime < 1 Then

Sci.Int.(Lahore),29(6),1297-1308,2017 ISSN 1013-5316;CODEN: SINTE 8 1303

November-December

 dTime = dTime * 60

 lMes.Caption = "seconds."

 End If

 End If

 End If

End If

tTime.Text = dTime display the formatted time

If sAnalysis = "" Then sAnalysis = "No weaknesses found on your password!"

tAnalysis.Text = sAnalysis 'display the analysis

End Sub

4.3 Methods of Password Cracking

A great deal of methods exists for gaining access to

systems by bypassing the standard security settings. These

methods may range from executing small portions of code

using exploits on the vulnerable machine to gain complete

control via backdoors or providing illicitly obtained but

legitimate login information .

In this paper the work focuses on the options regarding

password security and cracking methodology is Brute

Force attacks.

I. Offline Attack Phase (Brute Force Attack)

Permutation with Repetitions Algorithm

This method permutated a byte array of a given size using a

given byte set. Note "repetitions" means the same character

can be repeated in the permutation not that there are repeats

of the permutation. Compile before testing it will be slow

in the IDE.

A brute force attack performs and exhaustive search on the

hash or hashes by calculating the hash of each and every

string combination for a chosen character set and string

length. The calculated hashes compared with the hashes to

be recovered until a match is found or the attack is finished.

When attempting a brute force attack on more than 10

characters the time needed to perform it becomes infeasible

because of the huge key space and the exponential growth

in possible strings with the addition of each extra character.

This thesis refers to the time spent on calculating each

unsuccessful match string as noise.

 It is important to reduce ―noise‖ in order to end up with an

efficient attack method that will produce the most

recovered hashes in the least time with the least

computations. By this definition, a brute force attack is

extremely inefficient because it attempts many strings that

are unlikely to produce a match.

4.4 Analyzing Passwords

I. Analyses and Enhancing Password using AEP

In this section, our work will review on developed system

will call ―Analyzing and Enhancing Password‖ AEP.

The key to a good password checker is the ability to help a

user create a secure password while ensuring the password

is easy for the particular user to memorize. Both of these

aspects are important since it is very easy to develop a

policy that results in strong passwords (using random

password generators) that are particularly unusable. In

current approach it will used Different Policies and Advice

on Password Creation that shown previously to apply all

the advice and benefits in order to create strong passwords.

5. System implementation

The system was implemented using visual basic language.

The system was attached to a network in order to ensure

accurate conditions as close to real-world as possible. Two

computers were used based on the specifications provided

in Table 4
Table 4 computer specifications

 Attacker PC Server PC

 CPU Pentium D Pentium D

 RAM 2GB 1GB

 HDD 160GB 80GB / 160GB

 NIC speed 100mbps 100mbps

 IP Address 192.168.1.83 192.168.1.85

 GPU Radeon X550 N/A

 OS Kali Linux Debian (Virtual Machine)

The addition of a graphics card in Attacker PC may seem

arbitrary but, as brute force attacks require parallel

calculation, the GPU is far better than the CPU. Given the

exponential increase in processing power of GPUs since the

release of the Radeon X550, it is safe to assume any

parallel calculations will be faster under today's systems he

Server-PC would attempt to simulate an access server in a

working environment. It would have minimal security

features (given that this thesis discusses security of

passwords, rather than preventative measures). A number

of user accounts were created, each with incrementally

secure passwords and higher permissions depending on

their role inside the virtual environment.

6. SIMULATION RESULTS

The first step in the system is generating password. This

operation is accomplished by using various techniques that

explain in previous sections. Figures (1) show the interface

of password generation operation.

1304 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),29(6),1297-1308,2017

November-December

Fig (1): Snapshot of password generator possibilities

The Second step is checking password strength tester

(PST) In Figure (2) a snapshot of password strength tester

(PST). The user enters a password such as ―life45!‖. PST

calculates the probability of this password which is

(1.48×10
-13

) see. Since the probability of this password is

greater than the threshold, PST suggests some options for

user to create a new password using the PST system

algorithm and choosing one of the operations randomly.

Here for example the suggested password is ―academia‖

which is exists in password data sets. By selecting the new

passwords randomly, we are avoiding the possibility of

suggesting the same password to different users with the

same original password.

Fig (2): Snapshot of PST suggesting a good password option to the user.

Sci.Int.(Lahore),29(6),1297-1308,2017 ISSN 1013-5316;CODEN: SINTE 8 1305

November-December

.

Fig (3): Snapshot of PST calculated the required time to crack “fFgm 87a” password

However, at the Passwords^12 Security Conference in

December of 2012 Jeremi M. Gosney gave a presentation

that stipulated password crackers need more power. He

went on to introduce a system that contained 25 AMD

Radeon GPUs [38].

Limiting oneself to only a subset of the available symbols

can dramatically reduce the strength of the password. Using

the alphanumeric subset of 62 characters (with a speed of 2

million attempts per second), the crack would take three

years to complete. Using only lowercase and numbers the

subset is only 32 characters and would complete within 6

days. Against a more powerful system, such passwords

would hold up for mere seconds.

Length can serve to offset this issue somewhat. Each

additional character space that needs to be calculated

increases the entropy of a password. Even the addition of a

single extra letter gives an additional exponent equal to the

number of characters in the subset used. For example:

Increasing the 32-character subset's password length to 10

instead of 8 increases the cracking time (at 2 million

guesses per second) to over 17 years.

When we increase the length of a password using 74

possible characters to we see such an exponential increase

in the cracking time that even Jeremi Gosney's system

would need 4750 years to break the password when

working against MD5 hashes.

After generate passwords step and checking passwords

strength step the next step in the system is trying to attack

password using brute force method see figure (4

)

Fig (4): Snapshot of password cracking using Brute force method.

1306 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),29(6),1297-1308,2017

November-December

The attack this time is much faster. Running at over 16000

attempts per second (as demonstrated in Figure 4), a much

larger password file (in excess of 300 megabytes) was used

and in a far shorter time. Additionally, the GPU can be

used instead of the CPU to dramatically increase cracking

speed. It is this result that lends credence to the idea that

password-cracking requirements have stayed stagnant

while cracking techniques have advanced.

Even on a standard processor, a password with 8 characters

is surprisingly weak. Sixteen thousand attempts a second

would take several years to break into an 8 character

password. However, when running on GPU the dramatic

increase in speeds renders an 8-letter password mostly

useless. The actual code stays from this concept slightly as

each element of the count array can have because only hold

one value, it is merely incremented or reset according to the

last value. Also the reel that stores the units (the reel on the

right) is not used.

At the first tested this algorithm, it must admit didn’t

expect it to be so fast, having said that don’t be

disappointed if the input a long password with all the

characters selected and the program just keeps churning

away. Brute forcing a password could take years in some

cases. At this point in the experiment, brute force options

were considered. However, there were several drawbacks

that prevented us from running them. Primary among them

was the available hardware. While GPUs have drastically

increase the speed of cracking passwords, the devices

available in our testing environment would not have

provided the required power. The cost of obtaining such

devices was also unfeasible for testing purposes, as for a

reliable result, high end graphics cards would be required.

A second drawback was in the speed of the devices.

Running with substandard hardware, if we could attain

200,000 guesses a second, an 8 letter password containing

only lowercase letters would still take 12 days to run.

While this is not an unreasonable runtime in real world

situations, the number of passwords we needed to test

combined with the complexity made testing brute force

methods impossible. For the purposes of this thesis,

however, we can consider theoretical values. Brute force

attacks can be considered more effective, but far slower

than dictionary attacks. Both attacks will be subject to

similar network traffic when used online and thus our

online results only need consideration when it comes to

dictionary attacks.

Brute force attacks excel when it comes to offline password

cracking on dedicated hardware. As such, we can presume

that any system designed for these attacks will provide far

better results than our offline dictionary attack.

A loop counting in a given base is the mechanism for this

permutation with repetition algorithm. It’s easy to figure

out if you think of a mile-o-meter (the small group of reels

found on a speed-o-graph) that records a vehicles mileage.

As you know the reels are numbered from 0 – 9 (base 10)

and when a reel rotates and reaches 0 again the next reel to

the left is incremented by 1. Each element of the count

array (m_bCountArr) is a virtual reel, but numbered in the

base (integer representation) according to the chosen

character set. So, if the chosen character set was ―Lower

Case‖ the base would be 26 and each reel would be

numbered 0 - 25.

Using each current reel value as an index to the character

set (m_bByteSet) it is then possible to permute the

password array (m_bPwrdArr) in the correct sequence.The

last step in system is Enhancing Password using (EP) , the

EP is worked after analyses the password in order to

detecting wither the entered password is(Very Strong ,

Fairly Strong , Medium, Weak , Very weak)depending on

the policies that shown in previous sections EP enhanced

password if the password is a weak and needed to enhanced

see table (5)
Table 5 User and password setup values

Name User Name Role Password Strength

Dr.Abdulrahman

Hammed

Ahammed-6789 Head of Math.

Dep.

No weaknesses found on your password! Very Strong

Dr.Ahmed Molied amolied12d45 IT Dep. 1-There's no uppercase letters in your password

2-There's no special chars in your password.

Fairly

Strong

Ali Mhommed Amhommed9 IT intern There's no special chars in your password Weak

Hassan Ahamed Hahamed12 CEO There's no special chars in your password. Medium

Najlaa Azher Nazher Accounting 1-There's no numbers in your password.

2- There's no special chars in your password.

3- Your password length is under 8. Weakpa

Very weak

6. CONCLUSION AND FURTHER SUGGESTIONS

In this paper we developed a new approach to help users

create strong passwords based on cryptanalysis techniques.

this study could promote password creation policies and a

more secure and usable approach to enforce users to have

strong passwords. As mentioned previously in the current

research work, with further studies on usability of the

passwords. Brute force attacks are clearly the most reliable

method of getting access to a password. However, network

speed would clearly be a controlling factor in an online

attack. With modern hardware, the computer would be able

to guess passwords far faster than the login attempt can be

made. Indeed, it could be capable of guessing more

passwords than the network can handle. This once again

leads to very obvious traffic that should raise alarms with

any system administrator. We also built a system (EP) that

enhanced password when the system detected the password

is weak and needed to enhance and showed the

effectiveness of our approach through a series of

experiments. When looking at the theoretical results

outlined it seems clear that our current password systems

are unsatisfactory with regards to the guidelines offered to

users. Six to ten letters do not provide enough entropy

when faced with modern cracking techniques, even when

Sci.Int.(Lahore),29(6),1297-1308,2017 ISSN 1013-5316;CODEN: SINTE 8 1307

November-December

each possible letter set is used. Systems which mandate the

use of at least two or three of the possible character subsets

lead to distinctly more secure passwords than those which

do not. Should people insist on using passwords easy to

remember, such as a string of words, they should be as long

as possible. A word string such as

dogcatrabbitbirdpigsnake is far more difficult to crack than

D21Fx0e3 which is an example of a short, high entropy

password. For Further Suggestions the password

modification algorithm must be used and improved to

generate passwords with distances more than one more

efficiently. this paper focuses on the latter, though options

about the former will be discussed to provide a base for

comparison. We will touch on other areas, like Phishing

and Keylogging and Man-in-the-Middle attacks ,also a

number of options could be regarding password security

and cracking methodology like Dictionary attacks and

Online vs Offline attacks.

REFERENCES

[1] Stobert, E. and R. Biddle (2014). The password life

cycle: user behaviour in managing passwords.

Proc. SOUPS.

[2] Weir, M., Aggarwal, S., Collins, M., & Stern, H.

(2010, October). Testing metrics for password

creation policies by attacking large sets of revealed

passwords. In Proceedings of the 17th ACM

conference on Computer and communications

security (pp. 162-175). ACM.

[3] Verheul, E. R. (2007, February). Selecting secure

passwords. In Cryptographers’ Track at the RSA

Conference (pp. 49-66). Springer Berlin Heidelberg.

[4] Weir, M., Aggarwal, S., De Medeiros, B., & Glodek,

B. (2009, May). Password cracking using

probabilistic context-free grammars. In Security and

Privacy, 2009 30th IEEE Symposium on (pp. 391-

405). IEEE

 [5] Wash, R., Rader, E., Berman, R., & Wellmer, Z. (2016,

June). Understanding password choices: How

frequently entered passwords are re-used across

websites. In Symposium on Usable Privacy and

Security (SOUPS).

 [6] Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B.,

Szydlowski, M., Kemmerer, R., ... & Vigna, G. (2009,

November). Your botnet is my botnet: analysis of a

botnet takeover. In Proceedings of the 16th ACM

conference on Computer and communications

security (pp. 635-647). ACM.

[7] Aggarwal, S., Yazdi, S. H., & Weir, C. M. (2016). U.S.

Patent No. 9,524,393. Washington, DC: U.S. Patent

and Trademark Office.

[8] Aggarwal, S., Yazdi, S. H., & Weir, C. M. (2016). U.S.

Patent No. 9,524,393. Washington, DC: U.S. Patent

and Trademark Office.

[9] Burr, W. E., Dodson, D. F., & Polk, W. T.

(2004). Electronic authentication guideline. US

Department of Commerce, Technology

Administration, National Institute of Standards and

Technology.

[10] Zhang, Y., Monrose, F., & Reiter, M. K. (2010,

October). The security of modern password

expiration: An algorithmic framework and empirical

analysis. In Proceedings of the 17th ACM conference

on Computer and communications security (pp. 176-

186). ACM.

[11] Inglesant, P. G., & Sasse, M. A. (2010, April). The

true cost of unusable password policies: password use

in the wild. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems (pp. 383-

392). ACM.

 [12] Charoen, D., Raman, M., & Olfman, L. (2008).

Improving end user behaviour in password utilization:

An action research initiative. Systemic Practice and

Action Research, 21(1), 55-72.

[13] Ruoti, S., Monson, T., Wu, J., Zappala, D., &

Seamons, K. (2017, July). Weighing Context and

Trade-offs: How Suburban Adults Selected Their

Online Security Posture. In Thirteenth Symposium on

Usable Privacy and Security ({SOUPS} 2017) (pp.

211-228). USENIX} Association}. .

 [14] Schroeder, J. (2017). Advanced Persistent Training:

Take Your Security Awareness Program to the Next

Level. Apress.

 [15] Florencio, D., & Herley, C. (2007, May). A large-

scale study of web password habits. In Proceedings of

the 16th international conference on World Wide

Web(pp. 657-666). ACM.

 [16] Komanduri, S., Shay, R., Kelley, P. G., Mazurek, M.

L., Bauer, L., Christin, N., ... & Egelman, S. (2011,

May). Of passwords and people: measuring the effect

of password-composition policies. In Proceedings of

the SIGCHI Conference on Human Factors in

Computing Systems (pp. 2595-2604). ACM.

 [17] Bard, G. V. (2007, January). Spelling-error tolerant,

order-independent pass-phrases via the Damerau-

Levenshtein string-edit distance metric.

In Proceedings of the fifth Australasian symposium on

ACSW frontiers-Volume 68(pp. 117-124). Australian

Computer Society, Inc..

[18] Yan, J., Blackwell, A., Anderson, R., & Grant, A.

(2000). The memorability and security of passwords–

some empirical results (No. UCAM-CL-TR-500).

University of Cambridge, Computer Laboratory.

[19] Chiasson, S., Forget, A., Stobert, E., van Oorschot, P.

C., & Biddle, R. (2009, November). Multiple

password interference in text passwords and click-

based graphical passwords. In Proceedings of the 16th

ACM conference on Computer and communications

security (pp. 500-511). ACM.

[20] Yan, J. J. (2001, September). A note on proactive

password checking. In Proceedings of the 2001

workshop on New security paradigms (pp. 127-135).

ACM.

[21] Spafford, E. H. (1992). Opus: Preventing weak

password choices. Computers & Security, 11(3), 273-

278.

[22] Schechter, S., Herley, C., & Mitzenmacher, M. (2010,

August). Popularity is everything: A new approach to

protecting passwords from statistical-guessing attacks.

In Proceedings of the 5th USENIX conference on Hot

topics in security(pp. 1-8). USENIX Association.

[23] Castelluccia, C., Dürmuth, M., & Perito, D. (2012,

February). Adaptive Password-Strength Meters from

Markov Models. In NDSS.

[24] Yazdi, S. H. (2011). Analyzing Password Strength &

Efficient Password Cracking.

1308 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),29(6),1297-1308,2017

November-December

[25] Yahoo Safety Center(2017) "Password Tips - Yahoo

Safety",: Security : Password Tips.

[26] Burnett, M. (2006). Perfect password: Selection,

protection, authentication. Syngress.

[27] Houshmand, S. (2011). Analyzing Password Strength

and Efficient Password Cracking. Electronic Thesis,

Treatises and Dissertations. Paper, 3737.

[28] Waugh, R. (2012). No wonder hackers have it easy:

Most of us now have 26 different online accounts-but

only five passwords. Daily Mail.

[29] Florencio, D., & Herley, C. (2007, May). A large-scale

study of web password habits. In Proceedings of the

16th international conference on World Wide Web(pp.

657-666). ACM.

[30] Houshmand, S., & Aggarwal, S. (2012, December).

Building better passwords using probabilistic

techniques. In Proceedings of the 28th Annual

Computer Security Applications Conference (pp. 109-

118). ACM.

[31] Das, A., Bonneau, J., Caesar, M., Borisov, N., &

Wang, X. (2014, February). The Tangled Web of

Password Reuse. In NDSS (Vol. 14, pp. 23-26).

[32] Juels, A., & Rivest, R. L. (2013, November).

Honeywords: Making password-cracking detectable.

In Proceedings of the 2013 ACM SIGSAC conference

on Computer & communications security (pp. 145-

160). ACM.

[33] Houshmand, S. (2011). Analyzing Password Strength

and Efficient Password Cracking. Electronic Thesis,

Treatises and Dissertations. Paper, 3737.

[34] Yan, J., Blackwell, A., Anderson, R., & Grant, A.

(2000). The memorability and security of passwords–

some empirical results (No. UCAM-CL-TR-500).

University of Cambridge, Computer Laboratory.

[35] Shoeb, M., & Gupta, V. K. (2013). A crypt analysis of

the tiny encryption algorithm in key

generation. International Journal of Communication

and Computer Technologies, 1(38).

[36] Uhl, A., & Pommer, A. (2005). Application

scenarios for the encryption of still visual data. Image

and video encryption from Digital Rights

Management to secured personal communication,

Advances in Information Security, 15, 31-43.

[37] Robling Denning, D. E. (1982). Cryptography and

data security. Addison-Wesley Longman Publishing

Co., Inc..

[38] Velki, T., Šolić, K., & Nenadić, K. (2015).

Development and Validation of Users' Information

Security Awareness Questionnaire

(UISAQ). Psychological Topics, 24(3), 401-424.

[39] Gosney J.M. ,2012 "Passwords^12 Security

Conference",Password

CrackingHPC[Online]Location:http://passwords12.at.

ifi.uio.no/Jeremi_Gosney_Password_Cracking_HPC/

,

http://passwords12.at.ifi.uio.no/Jeremi_Gosney_Password_Cracking_HPC/
http://passwords12.at.ifi.uio.no/Jeremi_Gosney_Password_Cracking_HPC/

